

    
      
          
            
  SPatial INTeraction models (SPINT)






          

      

      

    

  

    
      
          
            
  
Installation

spint supports python 3.5 [https://docs.python.org/3.5/] and 3.6 [https://docs.python.org/3.6/] only. Please make sure that you are
operating in a python 3 environment.


Installing released version

spint is available on the Python Package Index [https://pypi.org/project/spglm/]. Therefore, you can either
install directly with pip from the command line:

pip install -U spint





or download the source distribution (.tar.gz) and decompress it to your selected
destination. Open a command shell and navigate to the decompressed folder.
Type:

pip install .








Installing development version

Potentially, you might want to use the newest features in the development
version of spint on github - pysal/spint [https://github.com/pysal/spint] while have not been incorporated
in the Pypi released version. You can achieve that by installing pysal/spint [https://github.com/pysal/spint]
by running the following from a command shell:

pip install https://github.com/pysal/spint/archive/master.zip





You can  also fork [https://help.github.com/articles/fork-a-repo/] the pysal/spint [https://github.com/pysal/spint] repo and create a local clone of
your fork. By making changes
to your local clone and submitting a pull request to pysal/spint [https://github.com/pysal/spint], you can
contribute to the mgwr development.







          

      

      

    

  

    
      
          
            
  
API reference


Gravity-type spatial interaction models







	spint.gravity.BaseGravity(flows, cost[, …])

	Base class to set up gravity-type spatial interaction models and dispatch estimaton technqiues.



	spint.gravity.Gravity(flows, o_vars, d_vars, …)

	Unconstrained (traditional gravity) gravity-type spatial interaction model



	spint.gravity.Production(flows, origins, …)

	Production-constrained (origin-constrained) gravity-type spatial interaction model



	spint.gravity.Attraction(flows, …[, …])

	Attraction-constrained (destination-constrained) gravity-type spatial interaction model



	spint.gravity.Doubly(flows, origins, …[, …])

	Doubly-constrained gravity-type spatial interaction model









Tests for overdispersion







	spint.dispersion.alpha_disp(model[, alt_var])

	Test the hypothesis that var[y] = mu (equidispersion) against the alternative hypothesis that var[y] = mu + alpha * alt_var(mu) where mu is the expected value of y, alpha is an estimated coefficient, and alt_var() specifies an alternative variance as a function of mu.



	spint.dispersion.phi_disp(model)

	Test the hypothesis that var[y] = mu (equidispersion) against the alternative hypothesis (quasi-Poisson) that var[y] = phi * mu  where mu is the expected value of y and phi is an estimated overdispersion coefficient which is equivalent to 1+alpha in the alternative alpha dispersion test.












          

      

      

    

  

    
      
          
            
  
spint.gravity.BaseGravity


	
class spint.gravity.BaseGravity(flows, cost, cost_func='pow', o_vars=None, d_vars=None, origins=None, destinations=None, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Base class to set up gravity-type spatial interaction models and dispatch
estimaton technqiues.


	Parameters

	
	flowsarray of integers
	n x 1; observed flows between O origins and D destinations



	originsarray of strings
	n x 1; unique identifiers of origins of n flows



	destinationsarray of strings
	n x 1; unique identifiers of destinations of n flows



	costarray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cost_funcstring or function that has scalar input and output
	functional form of the cost function;
‘exp’ | ‘pow’ | custom function



	o_varsarray (optional)
	n x p; p attributes for each origin of  n flows; default
is None



	d_varsarray (optional)
	n x p; p attributes for each destination of n flows;
default is None



	constantboolean
	True to include intercept in model; True by default



	frameworkstring
	estimation technique; currently only ‘GLM’ is avaialble



	Quasiboolean
	True to estimate QuasiPoisson model; should result in same
parameters as Poisson but with altered covariance; default
to true which estimates Poisson model



	SFarray
	n x 1; eigenvector spatial filter to include in the model;
default to None which does not include a filter; not yet
implemented



	CDarray
	n x 1; competing destination term that accounts for the
likelihood that alternative destinations are considered
along with each destination under consideration for every
OD pair; defaults to None which does not include a CD
term; not yet implemented



	LagW object
	spatial weight for n observations (OD pairs) used to
construct a spatial autoregressive model and estimator;
defaults to None which does not include an autoregressive
term; not yet implemented







	Attributes

	
	farray
	n x 1; observed flows; dependent variable; y



	ninteger
	number of observations



	kinteger
	number of parameters



	carray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cffunction
	cost function; used to transform cost variable



	ovarray
	n x p(o); p attributes for each origin of n flows



	dvarray
	n x p(d); p attributes for each destination of n flows



	constantboolean
	True to include intercept in model; True by default



	yarray
	n x 1; dependent variable used in estimation including any
transformations



	Xarray
	n x k, design matrix used in estimation



	paramsarray
	n x k, k estimated beta coefficients; k = p(o) + p(d) + 1



	yhatarray
	n x 1, predicted value of y (i.e., fittedvalues)



	cov_paramsarray
	Variance covariance matrix (k x k) of betas



	std_errarray
	k x 1, standard errors of betas



	pvaluesarray
	k x 1, two-tailed pvalues of parameters



	tvaluesarray
	k x 1, the tvalues of the standard errors



	deviancefloat
	value of the deviance function evalued at params;
see family.py for distribution-specific deviance



	resid_devarray
	n x 1, residual deviance of model



	llffloat
	value of the loglikelihood function evalued at params;
see family.py for distribution-specific loglikelihoods



	llnullfloat
	value of the loglikelihood function evaluated with only an
intercept; see family.py for distribution-specific
loglikelihoods



	AICfloat
	Akaike information criterion



	D2float
	percentage of explained deviance



	adj_D2float
	adjusted percentage of explained deviance



	pseudo_R2float
	McFadden’s pseudo R2  (coefficient of determination)



	adj_pseudoR2float
	adjusted McFadden’s pseudo R2



	SRMSEfloat
	standardized root mean square error



	SSIfloat
	Sorensen similarity index



	resultsobject
	full results from estimated model. May contain addtional
diagnostics



	Example
	

	——-
	

	>>> import numpy as np
	

	>>> import libpysal
	

	>>> from spint.gravity import BaseGravity
	

	>>> db = libpysal.io.open(libpysal.examples.get_path(‘nyc_bikes_ct.csv’))
	

	>>> cost = np.array(db.by_col(‘tripduration’)).reshape((-1,1))
	

	>>> flows = np.array(db.by_col(‘count’)).reshape((-1,1))
	

	>>> model = BaseGravity(flows, cost)
	

	>>> model.params
	

	array([17.84839637, -1.68325787])
	







Methods







	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.












	SRMSE

	


	SSI

	


	reshape

	






	
__init__(self, flows, cost, cost_func='pow', o_vars=None, d_vars=None, origins=None, destinations=None, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	SRMSE(self)

	



	SSI(self)

	



	__init__(self, flows, cost[, cost_func, …])

	Initialize self.



	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	reshape(self, array)

	














          

      

      

    

  

    
      
          
            
  
spint.gravity.Gravity


	
class spint.gravity.Gravity(flows, o_vars, d_vars, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Unconstrained (traditional gravity) gravity-type spatial interaction model


	Parameters

	
	flowsarray of integers
	n x 1; observed flows between O origins and D destinations



	costarray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cost_funcstring or function that has scalar input and output
	functional form of the cost function;
‘exp’ | ‘pow’ | custom function



	o_varsarray (optional)
	n x p; p attributes for each origin of  n flows; default
is None



	d_varsarray (optional)
	n x p; p attributes for each destination of n flows;
default is None



	constantboolean
	True to include intercept in model; True by default



	frameworkstring
	estimation technique; currently only ‘GLM’ is avaialble



	Quasiboolean
	True to estimate QuasiPoisson model; should result in same
parameters as Poisson but with altered covariance; default
to true which estimates Poisson model



	SFarray
	n x 1; eigenvector spatial filter to include in the model;
default to None which does not include a filter; not yet
implemented



	CDarray
	n x 1; competing destination term that accounts for the
likelihood that alternative destinations are considered
along with each destination under consideration for every
OD pair; defaults to None which does not include a CD
term; not yet implemented



	LagW object
	spatial weight for n observations (OD pairs) used to
construct a spatial autoregressive model and estimator;
defaults to None which does not include an autoregressive
term; not yet implemented







	Attributes

	
	farray
	n x 1; observed flows; dependent variable; y



	ninteger
	number of observations



	kinteger
	number of parameters



	carray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cffunction
	cost function; used to transform cost variable



	ovarray
	n x p(o); p attributes for each origin of n flows



	dvarray
	n x p(d); p attributes for each destination of n flows



	constantboolean
	True to include intercept in model; True by default



	yarray
	n x 1; dependent variable used in estimation including any
transformations



	Xarray
	n x k, design matrix used in estimation



	paramsarray
	n x k, k estimated beta coefficients; k = p(o) + p(d) + 1



	yhatarray
	n x 1, predicted value of y (i.e., fittedvalues)



	cov_paramsarray
	Variance covariance matrix (kxk) of betas



	std_errarray
	k x 1, standard errors of betas



	pvaluesarray
	k x 1, two-tailed pvalues of parameters



	tvaluesarray
	k x 1, the tvalues of the standard errors



	deviancefloat
	value of the deviance function evalued at params;
see family.py for distribution-specific deviance



	resid_devarray
	n x 1, residual deviance of model



	llffloat
	value of the loglikelihood function evalued at params;
see family.py for distribution-specific loglikelihoods



	llnullfloat
	value of the loglikelihood function evaluated with only an
intercept; see family.py for distribution-specific
loglikelihoods



	AICfloat
	Akaike information criterion



	D2float
	percentage of explained deviance



	adj_D2float
	adjusted percentage of explained deviance



	pseudo_R2float
	McFadden’s pseudo R2  (coefficient of determination)



	adj_pseudoR2float
	adjusted McFadden’s pseudo R2



	SRMSEfloat
	standardized root mean square error



	SSIfloat
	Sorensen similarity index



	resultsobject
	Full results from estimated model. May contain addtional
diagnostics



	Example
	

	——-
	

	>>> import numpy as np
	

	>>> import libpysal
	

	>>> from spint.gravity import Gravity
	

	>>> db = libpysal.io.open(libpysal.examples.get_path(‘nyc_bikes_ct.csv’))
	

	>>> cost = np.array(db.by_col(‘tripduration’)).reshape((-1,1))
	

	>>> flows = np.array(db.by_col(‘count’)).reshape((-1,1))
	

	>>> o_cap = np.array(db.by_col(‘o_cap’)).reshape((-1,1))
	

	>>> d_cap = np.array(db.by_col(‘d_cap’)).reshape((-1,1))
	

	>>> model = Gravity(flows, o_cap, d_cap, cost, ‘exp’)
	

	>>> model.params
	

	array([ 3.80050153e+00,  5.54103854e-01,  3.94282921e-01, -2.27091686e-03])
	







Methods







	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self, loc_index, locs)

	Calibrate local models for subsets of data from a single location to all other locations












	SRMSE

	


	SSI

	


	reshape

	






	
__init__(self, flows, o_vars, d_vars, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	SRMSE(self)

	



	SSI(self)

	



	__init__(self, flows, o_vars, d_vars, cost, …)

	Initialize self.



	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self, loc_index, locs)

	Calibrate local models for subsets of data from a single location to all other locations



	reshape(self, array)

	














          

      

      

    

  

    
      
          
            
  
spint.gravity.Production


	
class spint.gravity.Production(flows, origins, d_vars, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Production-constrained (origin-constrained) gravity-type spatial interaction model


	Parameters

	
	flowsarray of integers
	n x 1; observed flows between O origins and D destinations



	originsarray of strings
	n x 1; unique identifiers of origins of n flows; when
there are many origins it will be faster to use integers
rather than strings for id labels.



	costarray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cost_funcstring or function that has scalar input and output
	functional form of the cost function;
‘exp’ | ‘pow’ | custom function



	d_varsarray (optional)
	n x p; p attributes for each destination of n flows;
default is None



	constantboolean
	True to include intercept in model; True by default



	frameworkstring
	estimation technique; currently only ‘GLM’ is avaialble



	Quasiboolean
	True to estimate QuasiPoisson model; should result in same
parameters as Poisson but with altered covariance; default
to true which estimates Poisson model



	SFarray
	n x 1; eigenvector spatial filter to include in the model;
default to None which does not include a filter; not yet
implemented



	CDarray
	n x 1; competing destination term that accounts for the
likelihood that alternative destinations are considered
along with each destination under consideration for every
OD pair; defaults to None which does not include a CD
term; not yet implemented



	LagW object
	spatial weight for n observations (OD pairs) used to
construct a spatial autoregressive model and estimator;
defaults to None which does not include an autoregressive
term; not yet implemented







	Attributes

	
	farray
	n x 1; observed flows; dependent variable; y



	ninteger
	number of observations



	kinteger
	number of parameters



	carray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cffunction
	cost function; used to transform cost variable



	oarray
	n x 1; index of origin id’s



	dvarray
	n x p; p attributes for each destination of n flows



	constantboolean
	True to include intercept in model; True by default



	yarray
	n x 1; dependent variable used in estimation including any
transformations



	Xarray
	n x k, design matrix used in estimation



	paramsarray
	n x k, k estimated beta coefficients; k = # of origins + p + 1



	yhatarray
	n x 1, predicted value of y (i.e., fittedvalues)



	cov_paramsarray
	Variance covariance matrix (kxk) of betas



	std_errarray
	k x 1, standard errors of betas



	pvaluesarray
	k x 1, two-tailed pvalues of parameters



	tvaluesarray
	k x 1, the tvalues of the standard errors



	deviancefloat
	value of the deviance function evalued at params;
see family.py for distribution-specific deviance



	resid_devarray
	n x 1, residual deviance of model



	llffloat
	value of the loglikelihood function evalued at params;
see family.py for distribution-specific loglikelihoods



	llnullfloat
	value of the loglikelihood function evaluated with only an
intercept; see family.py for distribution-specific
loglikelihoods



	AICfloat
	Akaike information criterion



	D2float
	percentage of explained deviance



	adj_D2float
	adjusted percentage of explained deviance



	pseudo_R2float
	McFadden’s pseudo R2  (coefficient of determination)



	adj_pseudoR2float
	adjusted McFadden’s pseudo R2



	SRMSEfloat
	standardized root mean square error



	SSIfloat
	Sorensen similarity index



	resultsobject
	Full results from estimated model. May contain addtional
diagnostics



	Example
	

	——-
	

	>>> import numpy as np
	

	>>> import libpysal
	

	>>> from spint.gravity import Production
	

	>>> db = libpysal.io.open(libpysal.examples.get_path(‘nyc_bikes_ct.csv’))
	

	>>> cost = np.array(db.by_col(‘tripduration’)).reshape((-1,1))
	

	>>> flows = np.array(db.by_col(‘count’)).reshape((-1,1))
	

	>>> o = np.array(db.by_col(‘o_tract’)).reshape((-1,1))
	

	>>> d_cap = np.array(db.by_col(‘d_cap’)).reshape((-1,1))
	

	>>> model = Production(flows, o, d_cap, cost, ‘exp’)
	

	>>> model.params[-4:]
	

	array([ 1.34721352,  0.96357345,  0.85535775, -0.00227444])
	







Methods







	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self[, locs])

	Calibrate local models for subsets of data from a single location to all other locations












	SRMSE

	


	SSI

	


	reshape

	






	
__init__(self, flows, origins, d_vars, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	SRMSE(self)

	



	SSI(self)

	



	__init__(self, flows, origins, d_vars, cost, …)

	Initialize self.



	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self[, locs])

	Calibrate local models for subsets of data from a single location to all other locations



	reshape(self, array)

	














          

      

      

    

  

    
      
          
            
  
spint.gravity.Attraction


	
class spint.gravity.Attraction(flows, destinations, o_vars, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Attraction-constrained (destination-constrained) gravity-type spatial interaction model


	Parameters

	
	flowsarray of integers
	n x 1; observed flows between O origins and D destinations



	destinationsarray of strings
	n x 1; unique identifiers of destinations of n flows; when
there are many destinations it will be faster to use
integers over strings for id labels.



	costarray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cost_funcstring or function that has scalar input and output
	functional form of the cost function;
‘exp’ | ‘pow’ | custom function



	o_varsarray (optional)
	n x p; p attributes for each origin of  n flows; default
is None



	constantboolean
	True to include intercept in model; True by default



	yarray
	n x 1; dependent variable used in estimation including any
transformations



	Xarray
	n x k, design matrix used in estimation



	frameworkstring
	estimation technique; currently only ‘GLM’ is avaialble



	Quasiboolean
	True to estimate QuasiPoisson model; should result in same
parameters as Poisson but with altered covariance; default
to true which estimates Poisson model



	SFarray
	n x 1; eigenvector spatial filter to include in the model;
default to None which does not include a filter; not yet
implemented



	CDarray
	n x 1; competing destination term that accounts for the
likelihood that alternative destinations are considered
along with each destination under consideration for every
OD pair; defaults to None which does not include a CD
term; not yet implemented



	LagW object
	spatial weight for n observations (OD pairs) used to
construct a spatial autoregressive model and estimator;
defaults to None which does not include an autoregressive
term; not yet implemented







	Attributes

	
	farray
	n x 1; observed flows; dependent variable; y



	ninteger
	number of observations



	kinteger
	number of parameters



	carray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cffunction
	cost function; used to transform cost variable



	darray
	n x 1; index of destination id’s



	ovarray
	n x p; p attributes for each origin of n flows



	constantboolean
	True to include intercept in model; True by default



	paramsarray
	n x k, k estimated beta coefficients; k = # of
destinations + p + 1



	yhatarray
	n x 1, predicted value of y (i.e., fittedvalues)



	cov_paramsarray
	Variance covariance matrix (kxk) of betas



	std_errarray
	k x 1, standard errors of betas



	pvaluesarray
	k x 1, two-tailed pvalues of parameters



	tvaluesarray
	k x 1, the tvalues of the standard errors



	deviancefloat
	value of the deviance function evalued at params;
see family.py for distribution-specific deviance



	resid_devarray
	n x 1, residual deviance of model



	llffloat
	value of the loglikelihood function evalued at params;
see family.py for distribution-specific loglikelihoods



	llnullfloat
	value of the loglikelihood function evaluated with only an
intercept; see family.py for distribution-specific
loglikelihoods



	AICfloat
	Akaike information criterion



	D2float
	percentage of explained deviance



	adj_D2float
	adjusted percentage of explained deviance



	pseudo_R2float
	McFadden’s pseudo R2  (coefficient of determination)



	adj_pseudoR2float
	adjusted McFadden’s pseudo R2



	SRMSEfloat
	standardized root mean square error



	SSIfloat
	Sorensen similarity index



	resultsobject
	Full results from estimated model. May contain addtional
diagnostics



	Example
	

	——-
	

	>>> import numpy as np
	

	>>> import libpysal
	

	>>> from spint.gravity import Attraction
	

	>>> nyc_bikes = libpysal.examples.load_example(‘nyc_bikes’)
	

	>>> db = libpysal.io.open(nyc_bikes.get_path(‘nyc_bikes_ct.csv’))
	

	>>> cost = np.array(db.by_col(‘tripduration’)).reshape((-1,1))
	

	>>> flows = np.array(db.by_col(‘count’)).reshape((-1,1))
	

	>>> d = np.array(db.by_col(‘d_tract’)).reshape((-1,1))
	

	>>> o_cap = np.array(db.by_col(‘o_cap’)).reshape((-1,1))
	

	>>> model = Attraction(flows, d, o_cap, cost, ‘exp’)
	

	>>> model.params[-4:]
	

	array([ 1.21962276,  0.87634028,  0.88290909, -0.00229081])
	







Methods







	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self[, locs])

	Calibrate local models for subsets of data from a single location to all other locations












	SRMSE

	


	SSI

	


	reshape

	






	
__init__(self, flows, destinations, o_vars, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	SRMSE(self)

	



	SSI(self)

	



	__init__(self, flows, destinations, o_vars, …)

	Initialize self.



	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self[, locs])

	Calibrate local models for subsets of data from a single location to all other locations



	reshape(self, array)

	














          

      

      

    

  

    
      
          
            
  
spint.gravity.Doubly


	
class spint.gravity.Doubly(flows, origins, destinations, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Doubly-constrained gravity-type spatial interaction model


	Parameters

	
	flowsarray of integers
	n x 1; observed flows between O origins and D destinations



	originsarray of strings
	n x 1; unique identifiers of origins of n flows; when
there are many origins it will be faster to use integers
rather than strings for id labels.



	destinationsarray of strings
	n x 1; unique identifiers of destinations of n flows; when
there are many destinations it will be faster to use
integers rather than strings for id labels



	costarray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cost_funcstring or function that has scalar input and output
	functional form of the cost function;
‘exp’ | ‘pow’ | custom function



	constantboolean
	True to include intercept in model; True by default



	yarray
	n x 1; dependent variable used in estimation including any
transformations



	Xarray
	n x k, design matrix used in estimation



	frameworkstring
	estimation technique; currently only ‘GLM’ is avaialble



	Quasiboolean
	True to estimate QuasiPoisson model; should result in same
parameters as Poisson but with altered covariance; default
to true which estimates Poisson model



	SFarray
	n x 1; eigenvector spatial filter to include in the model;
default to None which does not include a filter; not yet
implemented



	CDarray
	n x 1; competing destination term that accounts for the
likelihood that alternative destinations are considered
along with each destination under consideration for every
OD pair; defaults to None which does not include a CD
term; not yet implemented



	LagW object
	spatial weight for n observations (OD pairs) used to
construct a spatial autoregressive model and estimator;
defaults to None which does not include an autoregressive
term; not yet implemented







	Attributes

	
	farray
	n x 1; observed flows; dependent variable; y



	ninteger
	number of observations



	kinteger
	number of parameters



	carray
	n x 1; cost to overcome separation between each origin and
destination associated with a flow; typically distance or time



	cffunction
	cost function; used to transform cost variable



	oarray
	n x 1; index of origin id’s



	darray
	n x 1; index of destination id’s



	constantboolean
	True to include intercept in model; True by default



	paramsarray
	n x k, estimated beta coefficients; k = # of origins + #
of destinations; the first x-1 values
pertain to the x destinations (leaving out the first
destination to avoid perfect collinearity; no fixed
effect), the next x values pertain to the x origins, and the
final value is the distance decay coefficient



	yhatarray
	n x 1, predicted value of y (i.e., fittedvalues)



	cov_paramsarray
	Variance covariance matrix (kxk) of betas



	std_errarray
	k x 1, standard errors of betas



	pvaluesarray
	k x 1, two-tailed pvalues of parameters



	tvaluesarray
	k x 1, the tvalues of the standard errors



	deviancefloat
	value of the deviance function evalued at params;
see family.py for distribution-specific deviance



	resid_devarray
	n x 1, residual deviance of model



	llffloat
	value of the loglikelihood function evalued at params;
see family.py for distribution-specific loglikelihoods



	llnullfloat
	value of the loglikelihood function evaluated with only an
intercept; see family.py for distribution-specific
loglikelihoods



	AICfloat
	Akaike information criterion



	D2float
	percentage of explained deviance



	adj_D2float
	adjusted percentage of explained deviance



	pseudo_R2float
	McFadden’s pseudo R2  (coefficient of determination)



	adj_pseudoR2float
	adjusted McFadden’s pseudo R2



	SRMSEfloat
	standardized root mean square error



	SSIfloat
	Sorensen similarity index



	resultsobject
	Full results from estimated model. May contain addtional
diagnostics



	Example
	

	——-
	

	>>> import numpy as np
	

	>>> import libpysal
	

	>>> from spint.gravity import Doubly
	

	>>> db = libpysal.io.open(libpysal.examples.get_path(‘nyc_bikes_ct.csv’))
	

	>>> cost = np.array(db.by_col(‘tripduration’)).reshape((-1,1))
	

	>>> flows = np.array(db.by_col(‘count’)).reshape((-1,1))
	

	>>> d = np.array(db.by_col(‘d_tract’)).reshape((-1,1))
	

	>>> o = np.array(db.by_col(‘o_tract’)).reshape((-1,1))
	

	>>> model = Doubly(flows, o, d, cost, ‘exp’)
	

	>>> model.params[-1:]
	

	array([-0.00232112])
	







Methods







	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self[, locs])

	Not inmplemented for doubly-constrained models Not possible due to insufficient degrees of freedom.












	SRMSE

	


	SSI

	


	reshape

	






	
__init__(self, flows, origins, destinations, cost, cost_func, constant=True, framework='GLM', SF=None, CD=None, Lag=None, Quasi=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	SRMSE(self)

	



	SSI(self)

	



	__init__(self, flows, origins, destinations, …)

	Initialize self.



	fit(self[, framework, Quasi])

	Method that fits a particular count model usign the appropriate estimation technique.



	local(self[, locs])

	Not inmplemented for doubly-constrained models Not possible due to insufficient degrees of freedom.



	reshape(self, array)

	














          

      

      

    

  

    
      
          
            
  
spint.dispersion.alpha_disp


	
spint.dispersion.alpha_disp(model, alt_var=<function <lambda> at 0x7fdc9935a730>)

	Test the hypothesis that var[y] = mu (equidispersion) against the
alternative hypothesis that var[y] = mu + alpha * alt_var(mu) where mu
is the expected value of y, alpha is an estimated coefficient, and
alt_var() specifies an alternative variance as a function of mu.
alt_var=lambda x:x corresponds to an alternative hypothesis of a negative
binomimal model with a linear variance function and alt_var=lambda
x:x**2 correspinds to an alternative hypothesis of a negative binomial
model with a quadratic varaince function.

alpha > 0: overdispersion
alpha = 1: equidispersion
alpha < 0: underdispersion


	Parameters

	
	modelModel results class
	function can only be called on a sucessfully fitted model
which has a valid response variable, y, and a valid
predicted response variable, yhat.



	alt_varfunction
	specifies an alternative varaince as a function of mu.
Function must take a single scalar as input and return a
single scalar as output



	Returns
	

	——-
	

	array[alpha coefficient, tvalue of alpha, pvalue of alpha]
	















          

      

      

    

  

    
      
          
            
  
spint.dispersion.phi_disp


	
spint.dispersion.phi_disp(model)

	Test the hypothesis that var[y] = mu (equidispersion) against the
alternative hypothesis (quasi-Poisson) that var[y] = phi * mu  where mu
is the expected value of y and phi is an estimated overdispersion
coefficient which is equivalent to 1+alpha in the alternative alpha
dispersion test.

phi > 0: overdispersion
phi = 1: equidispersion
phi < 0: underdispersion


	Parameters

	
	modelModel results class
	function can only be called on a sucessfully fitted model
which has a valid response variable, y, and a valid
predicted response variable, yhat.



	alt_varfunction
	specifies an alternative varaince as a function of mu.
Function must take a single scalar as input and return a
single scalar as output



	Returns
	

	——-
	

	array[alpha coefficient, tvalue of alpha, pvalue of alpha]
	















          

      

      

    

  

    
      
          
            
  
References







          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | D
 | G
 | P
 


_


  	
      	__init__() (spint.gravity.Attraction method)

      
        	(spint.gravity.BaseGravity method)


        	(spint.gravity.Doubly method)


        	(spint.gravity.Gravity method)


        	(spint.gravity.Production method)


      


  





A


  	
      	alpha_disp() (in module spint.dispersion)


  

  	
      	Attraction (class in spint.gravity)


  





B


  	
      	BaseGravity (class in spint.gravity)


  





D


  	
      	Doubly (class in spint.gravity)


  





G


  	
      	Gravity (class in spint.gravity)


  





P


  	
      	phi_disp() (in module spint.dispersion)


  

  	
      	Production (class in spint.gravity)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          <no title>
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





